Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems

    2020, Volume 25, Number 1, pp.  33-39

    Author(s): Sachkov Y. L.

    We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra.
    In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.
    Keywords: optimal control, sub-Finsler geometry, Lie groups, Pontryagin maximum principle
    Citation: Sachkov Y. L., Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems, Regular and Chaotic Dynamics, 2020, Volume 25, Number 1, pp. 33-39



    Access to the full text on the Springer website