On Resonances in Hamiltonian Systems with Three Degrees of Freedom

    2019, Volume 24, Number 6, pp.  628-648

    Author(s): Karabanov A. A., Morozov A. D.

    We address the dynamics of near-integrable Hamiltonian systems with 3 degrees of freedom in extended vicinities of unperturbed resonant invariant Liouville tori. The main attention is paid to the case where the unperturbed torus satisfies two independent resonance conditions. In this case the average dynamics is 4-dimensional, reduced to a generalised motion under a conservative force on the 2-torus and is generically non-integrable. Methods of differential topology are applied to full description of equilibrium states and phase foliations of the average system. The results are illustrated by a simple model combining the non-degeneracy and non-integrability of the isoenergetically reduced system.
    Keywords: Hamiltonian systems, resonances, topological structures
    Citation: Karabanov A. A., Morozov A. D., On Resonances in Hamiltonian Systems with Three Degrees of Freedom, Regular and Chaotic Dynamics, 2019, Volume 24, Number 6, pp. 628-648



    Access to the full text on the Springer website