Vortex Pairs on the Triaxial Ellipsoid: Axis Equilibria Stability
2019, Volume 24, Number 1, pp. 61-79
Author(s): Koiller J., Castilho C., Regis Rodrigues A.
Author(s): Koiller J., Castilho C., Regis Rodrigues A.
We consider a pair of opposite vortices moving on the surface of the triaxial ellipsoid
$\mathbb{E}(a,b,c):$ $x^2/a+y^2/b+z^2/c=1, \, a < b < c$. The equations of motion are transported to $S^2 \times S^2$ via a conformal map that combines confocal quadric coordinates for the ellipsoid and sphero-conical coordinates in the sphere. The antipodal pairs form an invariant submanifold for the dynamics. We characterize the linear stability of the equilibrium pairs at the three axis endpoints.
Access to the full text on the Springer website |