Rational Integrability of Trigonometric Polynomial Potentials on the Flat Torus
2017, Volume 22, Number 4, pp. 386-407
Author(s): Combot T.
Author(s): Combot T.
We consider a lattice $\mathcal{L}\subset \mathbb{R}^n$ and a trigonometric potential $V$ with frequencies $k\in\mathcal{L}$. We then prove a strong rational integrability condition on $V$, using the support of its Fourier transform. We then use this condition to prove that a real trigonometric polynomial potential is rationally integrable if and only if it separates up to rotation of the coordinates. Removing the real condition, we also make a classification of rationally integrable potentials in dimension 2 and 3, and recover several integrable cases. These potentials after a complex variable change become real, and correspond to generalized Toda integrable potentials. Moreover, along the proof, some of them with high degree first integrals are explicitly integrated.
Access to the full text on the Springer website |