Arnold Diffusion for a Complete Family of Perturbations
2017, Volume 22, Number 1, pp. 78-108
Author(s): Delshams A., Schaefer R. G.
Author(s): Delshams A., Schaefer R. G.
In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of $2+1/2$ degrees of freedom $H(p,q,I,\varphi,s) = p^{2}/2+\cos q -1 +I^{2}/2 + h(q,\varphi,s;\varepsilon)$ — proving that for any small periodic perturbation of the form $h(q,\varphi,s;\varepsilon) = \varepsilon\cos q\left( a_{00} + a_{10}\cos\varphi + a_{01}\cos s \right)$ ($a_{10}a_{01} \neq 0$) there is global instability for the action. For the proof we apply a geometrical mechanism based in the so-called Scattering map. This work has the following structure: In a first stage, for a more restricted case ($I^*\thicksim\pi/2\mu$, $\mu = a_{10}/a_{01}$), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of the instability for any $\mu$). The bifurcations of the scattering map are also studied as a function of $\mu$. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.
Access to the full text on the Springer website |