Superintegrable Cases of Four-dimensional Dynamical Systems

    2016, Volume 21, Number 2, pp.  175-188

    Author(s): Esen O., Choudhury A. G., Guha P., Gümral H.

    Degenerate tri-Hamiltonian structures of the Shivamoggi and generalized Raychaudhuri equations are exhibited. For certain specific values of the parameters, it is shown that hyperchaotic Lü and Qi systems are superintegrable and admit tri-Hamiltonian structures.
    Keywords: first integrals, Darboux polynomials, Jacobi’s last multiplier, 4D Poisson structures, tri-Hamiltonian structures, Shivamoggi equations, generalized Raychaudhuri equations, Lü system and Qi system
    Citation: Esen O., Choudhury A. G., Guha P., Gümral H., Superintegrable Cases of Four-dimensional Dynamical Systems, Regular and Chaotic Dynamics, 2016, Volume 21, Number 2, pp. 175-188

    Access to the full text on the Springer website