Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere

    2013, Volume 18, Number 4, pp.  356-371

    Author(s): Borisov A. V., Mamaev I. S.

    A new integrable system describing the rolling of a rigid body with a spherical cavity on a spherical base is considered. Previously the authors found the separation of variables for this system on the zero level set of a linear (in angular velocity) first integral, whereas in the general case it is not possible to separate the variables. In this paper we show that the foliation into invariant tori in this problem is equivalent to the corresponding foliation in the Clebsch integrable system in rigid body dynamics (for which no real separation of variables has been found either). In particular, a fixed point of focus type is possible for this system, which can serve as a topological obstacle to the real separation of variables.
    Keywords: integrable system, bifurcation diagram, conformally Hamiltonian system, bifurcation, Liouville foliation, critical periodic solution
    Citation: Borisov A. V., Mamaev I. S., Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere, Regular and Chaotic Dynamics, 2013, Volume 18, Number 4, pp. 356-371



    Access to the full text on the Springer website