The Dynamics of Vortex Rings: Leapfrogging, Choreographies and the Stability Problem

    2013, Volume 18, Numbers 1-2, pp.  33-62

    Author(s): Borisov A. V., Kilin A. A., Mamaev I. S.

    We consider the problem of motion of axisymmetric vortex rings in an ideal incompressible fluid. Using the topological approach, we present a method for complete qualitative analysis of the dynamics of a system of two vortex rings. In particular, we completely solve the problem of describing the conditions for the onset of leapfrogging motion of vortex rings. In addition, for the system of two vortex rings we find new families of motions where the relative distances remain finite (we call them pseudo-leapfrogging). We also find solutions for the problem of three vortex rings, which describe both the regular and chaotic leapfrogging motion of vortex rings.
    Keywords: ideal fluid, vortex ring, leapfrogging motion of vortex rings, bifurcation complex, periodic solution, integrability, chaotic dynamics
    Citation: Borisov A. V., Kilin A. A., Mamaev I. S., The Dynamics of Vortex Rings: Leapfrogging, Choreographies and the Stability Problem, Regular and Chaotic Dynamics, 2013, Volume 18, Numbers 1-2, pp. 33-62



    Access to the full text on the Springer website