On the Poisson Structures for the Nonholonomic Chaplygin and Veselova Problems

    2012, Volume 17, Number 5, pp.  439-450

    Author(s): Tsiganov A. V.

    We discuss a Poisson structure, linear in momenta, for the generalized nonholonomic Chaplygin sphere problem and the $LR$ Veselova system. Reduction of these structures to the canonical form allows one to prove that the Veselova system is equivalent to the Chaplygin ball after transformations of coordinates and parameters.
    Keywords: nonholonomic mechanics, Poisson brackets
    Citation: Tsiganov A. V., On the Poisson Structures for the Nonholonomic Chaplygin and Veselova Problems, Regular and Chaotic Dynamics, 2012, Volume 17, Number 5, pp. 439-450



    Access to the full text on the Springer website