On Rosenhain–Göpel Configurations and Integrable Systems
2011, Volume 16, Numbers 3-4, pp. 210-222
Author(s):
Piovan L. A.
We give a birational morphism between two types of genus 2 Jacobians in $\mathbb{P}^{15}$. One of them is related to an Algebraic Completely Integrable System: the Geodesic Flow on $SO(4)$, metric II (so termed after Adler and van Moerbeke). The other Jacobian is related to a linear system in $|4\Theta|$ with 12 base points coming from a Göpel tetrad of 4 translates of the $\Theta$ divisor. A correspondence is given on the base spaces so that the Poisson structure of the $SO(4)$ system can be pulled back to the family of Göpel Jacobians.
Keywords:
integrable systems
Citation:
Piovan L. A., On Rosenhain–Göpel Configurations and Integrable Systems, Regular and Chaotic Dynamics,
2011, Volume 16, Numbers 3-4,
pp. 210-222
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.