Poles of tritronquée solution to the Painlevé I equation and cubic anharmonic oscillator

    2010, Volume 15, Numbers 2-3, pp.  390-403

    Author(s): Novokshenov V. Y.

    The distribution of poles of zero-parameter solution to Painlevé I, specified by P. Boutroux as intégrale tritronquée, is studied in the complex plane. This solution has regular asymptotics $−\sqrt{z/6} + O(1)$ as $z \to \infty$, $|\arg z| < 4\pi/5$. At the sector $|\arg z| > 4\pi/5$ it is a meromorphic function with regular asymptotic distribution of poles at infinity. This fact together with numeric simulations for $|z| < const$ allowed B. Dubrovin to make a conjecture that all poles of the intégrale tritronquée belong to this sector. As a step to prove this conjecture, we study the Riemann–Hilbert (RH) problem related to the specified solution of the Painlevé I equation. It is "undressed" to a similar RH problem for the Schrödinger equation with cubic potential. The latter determines all coordinates of poles for the intégrale tritronquée via a Bohr–Sommerfeld quantization conditions.
    Keywords: Painlevé equation, special functions, distribution of poles, Riemann–Hilbert problem, WKB approximation, Bohr–Sommerfield quantization, complex cubic potential
    Citation: Novokshenov V. Y., Poles of tritronquée solution to the Painlevé I equation and cubic anharmonic oscillator, Regular and Chaotic Dynamics, 2010, Volume 15, Numbers 2-3, pp. 390-403



    Access to the full text on the Springer website