Superintegrable system on a sphere with the integral of higher degree
2009, Volume 14, Number 6, pp. 615-620
Author(s): Borisov A. V., Kilin A. A., Mamaev I. S.
Author(s): Borisov A. V., Kilin A. A., Mamaev I. S.
We consider the motion of a material point on the surface of a sphere in the field of $2n + 1$ identical Hooke centers (singularities with elastic potential) lying on a great circle. Our main result is that this system is superintegrable. The property of superintegrability for this system has been conjectured by us in [1], where the structure of a superintegral of arbitrarily high odd degree in momemnta was outlined. We also indicate an isomorphism between this system and the one-dimensional $N$-particle system discussed in the recent paper [2] and show that for the latter system an analogous superintegral can be constructed.
Access to the full text on the Springer website |