From Jacobi problem of separation of variables to theory of quasipotential Newton equations
Author(s): Rauch-Wojciechowski S.
Second part of this work provides a summary of theory of quasipotential, cofactor pair Newton equations $\ddot q=M(q)$ admitting $n$ quadratic integrals of motion. This theory is a natural generalization of theory of separable potential systems $\ddot q=−∇V(q)$. The cofactor pair Newton equations admit a Hamilton–Poisson structure in an extended $2n + 1$ dimensional phase space and are integrable by embedding into a Liouville integrable system. Two characterizations of these systems are given: one through a Poisson pencil and another one through a set of Fundamental Equations. For a generic cofactor pair system separation variables have been found and such system have been shown to be equivalent to a Stäckel separable Hamiltonian system. The theory is illustrated by examples of driven and triangular Newton equations.
Access to the full text on the Springer website |