Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom
Author(s): Przybylska M.
The aim of this paper is, among others, to sharpen this result. Under certain genericity assumption concerning $V$ we prove the following fact. For each $k$ and $n$ there exists a finite set $\mathcal{I}_{n, k} \subset \mathcal{M}_k$ such that if the system is integrable, then all eigenvalues of the Hessian matrix $V''(\bf d)$ belong to $\mathcal{I}_{n, k}$. We give an algorithm which allows to find sets $\mathcal{I}_{n, k}$.
We applied this results for the case $n = k = 3$ and we found all integrable potentials satisfying the genericity assumption. Among them several are new and they are integrable in a highly non-trivial way. We found three potentials for which the additional first integrals are of degree 4 and 6 with respect to the momenta.
Access to the full text on the Springer website |