New Formula for the Eigenvectors of the Gaudin Model in the $sl(3)$ Case

    2008, Volume 13, Number 5, pp.  403-416

    Author(s): Burdík C., Navrátil O.

    We propose new formulas for eigenvectors of the Gaudin model in the sl(3) case. The central point of the construction is the explicit form of some operator $P$, which is used for derivation of eigenvalues given by the formula
    $|w_1, w_2) = \sum\limits_{n=0}^\infty \frac{P^n}{n!}| w_1, w_2, 0>$,
    where $w_1$, $w_2$ fulfil the standard well-know Bethe Ansatz equations.
    Keywords: Gaudin model, Bethe Ansatz
    Citation: Burdík C., Navrátil O., New Formula for the Eigenvectors of the Gaudin Model in the $sl(3)$ Case, Regular and Chaotic Dynamics, 2008, Volume 13, Number 5, pp. 403-416



    Access to the full text on the Springer website