Steering by Transient Destabilization in Piecewise-Holonomic Models of Legged Locomotion

    2008, Volume 13, Number 4, pp.  267-282

    Author(s): Proctor J. L., Holmes P. J.

    We study turning strategies in low-dimensional models of legged locomotion in the horizontal plane. Since the constraints due to foot placement switch from stride to stride, these models are piecewise-holonomic, and this can cause stride-to-stride changes in angular momentum and in the ratio of rotational to translational kinetic energy. Using phase plane analyses and parameter studies based on experimental observations of insects, we investigate how these changes can be harnessed to produce rapid turns, and compare the results with dynamical cockroach data. Qualitative similarities between the model and insect data suggest general strategies that could be implemented in legged robots.
    Keywords: biomechanics, hybrid dynamical system, insect locomotion, passive stability, piecewise holonomy, robotics, turning, transient instability
    Citation: Proctor J. L., Holmes P. J., Steering by Transient Destabilization in Piecewise-Holonomic Models of Legged Locomotion, Regular and Chaotic Dynamics, 2008, Volume 13, Number 4, pp. 267-282



    Access to the full text on the Springer website