Steering by Transient Destabilization in Piecewise-Holonomic Models of Legged Locomotion
2008, Volume 13, Number 4, pp. 267-282
Author(s): Proctor J. L., Holmes P. J.
Author(s): Proctor J. L., Holmes P. J.
We study turning strategies in low-dimensional models of legged locomotion in the horizontal plane. Since the constraints due to foot placement switch from stride to stride, these models are piecewise-holonomic, and this can cause stride-to-stride changes in angular momentum and in the ratio of rotational to translational kinetic energy. Using phase plane analyses and parameter studies based on experimental observations of insects, we investigate how these changes can be harnessed to produce rapid turns, and compare the results with dynamical cockroach data. Qualitative similarities between the model and insect data suggest general strategies that could be implemented in legged robots.
Access to the full text on the Springer website |