On Maximally Superintegrable Systems
2008, Volume 13, Number 3, pp. 178-190
Author(s):
Tsiganov A. V.
Locally any completely integrable system is maximally superintegrable system since we have the necessary number of the action-angle variables. The main problem is the construction of the single-valued additional integrals of motion on the whole phase space by using these multi-valued action-angle variables. Some constructions of the additional integrals of motion for the Stäckel systems and for the integrable systems related with two different quadratic $r$-matrix algebras are discussed. Among these system there are the open Heisenberg magnet and the open Toda lattices associated with the different root systems.
Keywords:
superintegrable systems, Toda lattices, Stackel systems
Citation:
Tsiganov A. V., On Maximally Superintegrable Systems, Regular and Chaotic Dynamics,
2008, Volume 13, Number 3,
pp. 178-190
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.