Chaotic burst in the dynamics of $f_\lambda (z) = \lambda \frac{\sinh (z)}{z}$
2005, Volume 10, Number 1, pp. 71-80
Author(s):
Guru Prem Prasad M.
In this paper, a one-parameter family of non-critically finite entire functions $\mathscr{F} \equiv \{f_\lambda(z)=\lambda f(z): \lambda \in \mathbb{R} \setminus \{0\}\}$ with $f(z) = \frac{\sinh z}{z}$ is considered and the dynamics of the entire transcendental functions $f_\lambda \in \mathscr{F}$ is studied in detail. It is shown that there exists a parameter value $\lambda^* > 0$ such that the Julia set of $f_\lambda (z)$ is nowhere dense subset for $0 < |\lambda| \leqslant \lambda^* (\approx 1.104)$. For $|\lambda| > \lambda^*$ the set explodes and becomes equal to the extended complex plane. This phenomenon is referred to as a chaotic burst in the dynamics of the functions $f_\lambda$ in the one-parameter family $\mathscr{F}$.
Keywords:
Fatou sets, Julia sets and Chaotic Burst
Citation:
Guru Prem Prasad M., Chaotic burst in the dynamics of $f_\lambda (z) = \lambda \frac{\sinh (z)}{z}$ , Regular and Chaotic Dynamics,
2005, Volume 10, Number 1,
pp. 71-80
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.