On the Steklov–Lyapunov case of the rigid body motion
2004, Volume 9, Number 2, pp. 77-89
Author(s):
Tsiganov A. V.
We construct a Poisson map between manifolds with linear Poisson brackets corresponding to the two samples of Lie algebra $e(3)$. Using this map we establish equivalence of the Steklov–Lyapunov system and the motion of a particle on the surface of the sphere under the influence of the fourth order potential. To study separation of variables for the Steklov case on the Lie algebra $so(4)$ we use the twisted Poisson map between the bi-Hamiltonian manifolds $e(3)$ and $so(4)$.
Citation:
Tsiganov A. V., On the Steklov–Lyapunov case of the rigid body motion, Regular and Chaotic Dynamics,
2004, Volume 9, Number 2,
pp. 77-89
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.