Geometrization of vortex and spiral flows in an ideal homogeneous fluid
2004, Volume 9, Number 1, pp. 21-28
Author(s):
Kistovich A. V., Chashechkin Y. D.
The theoretical study of steady vortex motion of homogeneous ideal heavy fluid with a free surface by methods of differential geometry is presented. The main idea of methods is based on suggestion that a velocity field is formed by geodesic flows at some surfaces. For steady flow integral flow lines are geodesics on the second order surfaces being parameterized and located in the space occupied by the fluid. In this case both Euler and continuity equations are transformed into equations for inner geometry parameters. Conditions on external parameters are derived from boundary conditions of the problem. The investigation of properties of generalized Rankine vortex that is vertical vortex flow contacting with a free surface is done. In supplement to the classical Rankine vortex these vortices are characterized by all finite specific integral invariants. The constructed set of explicit solutions depend on a unique parameter, which can be defined experimentally through measurements of depth and shape of a near surface hole produced by the vortex.
Citation:
Kistovich A. V., Chashechkin Y. D., Geometrization of vortex and spiral flows in an ideal homogeneous fluid, Regular and Chaotic Dynamics,
2004, Volume 9, Number 1,
pp. 21-28
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.