An Integrability of the Problem on Motion of Cylinder and Vortex in the Ideal Fluid
2003, Volume 8, Number 2, pp. 163-166
Author(s):
Borisov A. V., Mamaev I. S.
In this paper we present the nonlinear Poisson structure and two first integrals in the problem on plane motion of circular cylinder and $N$ point vortices in the ideal fluid. A priori this problem is not Hamiltonian. The particular case $N = 1$, i.e. the problem on interaction of cylinder and vortex, is integrable.
Citation:
Borisov A. V., Mamaev I. S., An Integrability of the Problem on Motion of Cylinder and Vortex in the Ideal Fluid, Regular and Chaotic Dynamics,
2003, Volume 8, Number 2,
pp. 163-166
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.