On Nonlinear Mechanics of Business Cycle Model
Author(s): Krawiec A., Szydlowski M.
In the special case of a small time-to-build parameter the general dynamics is reduced to a two-dimensional autonomous dynamical system. This system is examined in detail by methods of qualitative analysis of differential equations. Then cyclic behaviour in the system is represented by a limit cycle on the plane phase. It is shown that there is a certain bifurcation value of the time delay parameter which leads to a periodic orbit. We discuss the problem of the existence of a global attractor in $2$-dimensional phase space whose counterpart for the Kaldor model was considered by Chang and Smyth. It is shown that the presence of time-to-build excludes the asymptotically stable global critical point. Additionally, we analyse the question of uniqueness of the limit cycles of the model.
Download File PDF, 380.23 Kb |