Study of the Double Mathematical Pendulum — IV. Quantitative Bounds on Values of the System Parameters when the Homoclinic Transversal Intersections Exist
2001, Volume 6, Number 1, pp. 53-94
Author(s):
Ivanov A. V.
We consider the double mathematical pendulum in the limit of small ratio of pendulum masses. Besides we assume that values of other two system parameters are close to the degenerate ones (i.e. zero or infinity). In these limit cases we prove asymptotic formulae for the homoclinic invariant of some special chosen homoclinic trajectories and obtain quantitative bounds on values of the system parameters when these formulae are valid.
Citation:
Ivanov A. V., Study of the Double Mathematical Pendulum — IV. Quantitative Bounds on Values of the System Parameters when the Homoclinic Transversal Intersections Exist, Regular and Chaotic Dynamics,
2001, Volume 6, Number 1,
pp. 53-94
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.