Degeneracies of Periodic Solutions to the Beletsky Equation
2000, Volume 5, Number 3, pp. 313-328
Author(s):
Varin V. P.
We suggest a new method of analysis of degeneracies in families of periodic solutions to an ODE, which is based upon the application of variational equations of higher order. The equation of oscillations of a satellite in the plane of its elliptic orbit (the Beletsky equation) is considered as a model problem. We study the degeneracies of arbitrary co-dimension in the families of its $2\pi$-periodic solutions and obtain the explicit formulas for them, which allows to localize the degeneracies with high accuracy and to give them a geometric interpretation.
Citation:
Varin V. P., Degeneracies of Periodic Solutions to the Beletsky Equation, Regular and Chaotic Dynamics,
2000, Volume 5, Number 3,
pp. 313-328
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.