On Construction of the Effective Potential in Singular Cases
2000, Volume 5, Number 2, pp. 219-224
Author(s):
Karapetyan A. V.
It is known that the problem of an investigation of invariant sets (in particular stationary motions) of mechanical systems with symmetries can be reduced to the problem of the analysis of the effective potential [1-11]. The effective potential represents the minimum of the total mechanical energy with respect to quasivelocities on fixed levels of Noether's integrals corresponding to symmetries of the system. The effective potential is a function in the configuration space depending on constants of Noether's integrals. This function is defined in such points of the configuration space where Noether's integrals independent and can have singularities at some points where these integrals are dependent.
Citation:
Karapetyan A. V., On Construction of the Effective Potential in Singular Cases, Regular and Chaotic Dynamics,
2000, Volume 5, Number 2,
pp. 219-224
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.