On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$
1999, Volume 4, Number 3, pp. 45-52
Author(s):
Hadeler K. P., Selivanova E. N.
There is a well-known example of an integrable conservative system on $S^2$, the case of Kovalevskaya in the dynamics of a rigid body, possessing an integral of fourth degree in momenta. The aim of this paper is to construct new families of examples of conservative systems on $S^2$ possessing an integral of fourth degree in momenta.
Citation:
Hadeler K. P., Selivanova E. N., On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$, Regular and Chaotic Dynamics,
1999, Volume 4, Number 3,
pp. 45-52
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.