On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$

    1999, Volume 4, Number 3, pp.  45-52

    Author(s): Hadeler K. P., Selivanova E. N.

    There is a well-known example of an integrable conservative system on $S^2$, the case of Kovalevskaya in the dynamics of a rigid body, possessing an integral of fourth degree in momenta. The aim of this paper is to construct new families of examples of conservative systems on $S^2$ possessing an integral of fourth degree in momenta.
    Citation: Hadeler K. P., Selivanova E. N., On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$, Regular and Chaotic Dynamics, 1999, Volume 4, Number 3, pp. 45-52


    Download File
    PDF, 202.16 КБ