Integrable and non-integrable deformations of the skew Hopf bifurcation

    1999, Volume 4, Number 2, pp.  17-43

    Author(s): Broer H. W., Takens F., Wagener F. O.

    In the skew Hopf bifurcation a quasi-periodic attractor with nontrivial normal linear dynamics loses hyperbolicity. Periodic, quasi-periodic and chaotic dynamics occur, including motion with mixed spectrum. The case of $3$-dimensional skew Hopf bifurcation families of diffeomorphisms near integrability is discussed, surveying some recent results in a broad perspective. One result, using KAM-theory, deals with the persistence of quasi-periodic circles. Other results concern the bifurcations of periodic attractors in the case of resonance.
    Citation: Broer H. W., Takens F., Wagener F. O., Integrable and non-integrable deformations of the skew Hopf bifurcation, Regular and Chaotic Dynamics, 1999, Volume 4, Number 2, pp. 17-43


    Download File
    PDF, 588.84 Kb