Analitical Invariants of Conformal Transformations. A Dynamical System Approach
1998, Volume 3, Number 4, pp. 40-48
Author(s):
Gelfreich V. G.
The paper is devoted to the problem of analytical classification of conformal maps of the form $f : z \mapsto z + z^2 +\ldots$ in a neighborhood of the degenerate fixed point $z=0$. It is shown that the analytical invariants, constructed in the works of Voronin and Ecalle, may be considered as a measure of splitting for stable and unstable (semi-) invariant foliations associated with the fixed point. This splitting is exponentially small with respect to the distance to the fixed point.
Citation:
Gelfreich V. G., Analitical Invariants of Conformal Transformations. A Dynamical System Approach, Regular and Chaotic Dynamics,
1998, Volume 3, Number 4,
pp. 40-48
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.