Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci

    1997, Volume 2, Numbers 3-4, pp.  139-155

    Author(s): Lerman L. M.

    We study a $1$-parametric family of the Hamiltonian systems with $2$ hyperbolic fixed points and analyze the structure and bifurcations of homoclinic and heteroclinic trajectories under the variation of the parameter and energy values.
    Citation: Lerman L. M., Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci, Regular and Chaotic Dynamics, 1997, Volume 2, Numbers 3-4, pp. 139-155


    Download File
    PDF, 963.42 Kb