The linear variant of the Kozlov's theorem on the absence of first integrals being polinomial of a natural mechanical system in the case of branching of solutions
1997, Volume 2, Numbers 3-4, pp. 124-125
Author(s):
Ziglin S. L.
We obtained the upper limit for the number of functionally independent rational first integrals for a subgroup of the group of affine transformations of a complex affine space of finite dimension. This value does not exceed the difference between the power of the maximal set of functionally independent rational first integrals for the corresponding linear group and the maximal rank of the system consisted of the differentials of these first integrals restricted to the subspace generated by those elements of this subgroup that represent shifts.
Citation:
Ziglin S. L., The linear variant of the Kozlov's theorem on the absence of first integrals being polinomial of a natural mechanical system in the case of branching of solutions, Regular and Chaotic Dynamics,
1997, Volume 2, Numbers 3-4,
pp. 124-125
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.