On the Topological Structure of the Integrable Hamiltonian Systems Closed to the Given
1997, Volume 2, Number 2, pp. 98-105
Author(s):
Kalashnikov V. V.
Well known KAM theory describes the behaviour of the hamiltonian systems closed to the integrable one. In this paper we investigate the topology of integrable systems with two degrees of freedom near to some known integrable system. We say that two integrable systems are closed to each other, if the correspondent hamiltonians are closed. We will show that the topological structure of the perturbed integrable system can be obtained from the topological structure of the unperturbed system by means of several steps of calculations.
As a result of our research we introduce a method which helps to solve the problem whether an integrable hamiltonian system can be approximated by a given family of integrable systems.
Citation:
Kalashnikov V. V., On the Topological Structure of the Integrable Hamiltonian Systems Closed to the Given, Regular and Chaotic Dynamics,
1997, Volume 2, Number 2,
pp. 98-105
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.