The Poincare Map in the Regular Neighbourhoods of the Liouville Critical Leaves of an Integrable Hamiltonian System
1997, Volume 2, Number 2, pp. 79-86
Author(s):
Topalov P. I.
In this paper we investigate the Poincare map in the regular neighbourhood of a critical leaf of the Liouville foliation of an integrable Hamiltonian system with two degrees of freedom. It was proved in [3], that for an arbitrary surface transversal to the trajectories, the Poincare map is a one-time-map along the flow of some Hamiltonian, which is defined on the considering surface (this Hamiltonian is called "the Poincare Hamiltonian"). In the paper [4] it was proved that for every transversal surface the Poincare map is a restriction to the surface of some smooth function, which is defined on the regular neighbourhood of the critical leaf.
Citation:
Topalov P. I., The Poincare Map in the Regular Neighbourhoods of the Liouville Critical Leaves of an Integrable Hamiltonian System, Regular and Chaotic Dynamics,
1997, Volume 2, Number 2,
pp. 79-86
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.