Jacobi Vector Fields of Integrable Geodesic Flows
1997, Volume 2, Number 1, pp. 103-116
Author(s):
Matveev V. S., Topalov P. I.
We show that an invariant surface allows to construct the Jacobi vector field along a geodesic line and construct the formula for the normal part of the Jacobi field. If a geodesic line is the transversal intersection of two invariant surfaces (such situation we have, for example, if the geodesic line is hyperbolic) than we can construct the fundamental solution of Jacobi equation $\ddot{u}=-K(t)u$. That was done for quadratically integrable geodesic flows.
Citation:
Matveev V. S., Topalov P. I., Jacobi Vector Fields of Integrable Geodesic Flows, Regular and Chaotic Dynamics,
1997, Volume 2, Number 1,
pp. 103-116
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.